《找次品》教学反思
身为一名到岗不久的人民教师,课堂教学是我们的工作之一,写教学反思能总结我们的教学经验,那么优秀的教学反思是什么样的呢?下面是小编为大家收集的《找次品》教学反思,希望对大家有所帮助。
《找次品》教学反思1《找次品》是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培养学生的应用意识和解决实际问题的能力。
对传统设计思想的分析
传统设计一般是首先找5个零件中的次品(目标:在认识平衡与不平衡两种可能结果的基础上引导学生画框图,经历逻辑推理的过程);再找9个零件(目标:找到最优称法,形成猜想);然后称8个,27个,探索规律;最后称100个、243个零件(目标:继续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看体现了操作 ----猜测----验证 ---- 归纳 ----应用的教学思路,它的重点放在学生优化方案的比较上。这样设计有两个弊端。问题一:按这种单刀直入式进行研究,因学生的知识和方法储备不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维容易断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣不足,影响学生思维的主动性。问题二:在9个物品中找次品的探究过程中,让学生猜想最佳策略:分三堆,每堆尽量同样多的规律,学生不容易找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思考过程,另一方面也影响了学生对最佳策略的关注。如何通过优化策略的形成,提升学生的思维品质,高老师进行了如下的探索。
探索适合学情的实践尝试
1、巧:游戏互动做铺垫--巧妙渗透优化思想
在学生的猜数过程中,高老师总让学生处于最不利的处境,除非他选择了最佳策略,否则猜的次数总是最多。高老师心中想的数不是固定的,是根据学生的猜在不断的变化,也就是说,一开始他心中并没有想好一个具体的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生认识到运用缩小范围猜数可以提高效率 ,让学生在无意识的猜数游戏中感悟快速猜数的方法与策略。
2、趣:交流策略多样化---引出优化方法
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天平来进行实践探究,学生非常感兴趣。高老师放手让学生探究3个、5个测品中找一个次品,体现策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不容易理解,教学时我根据学生的回答同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下一定的基础。
3、实:打破常规设悬念---激起优化需求
如果说数学思想方法是可以传授的话,那教师肯定是把其中富有思考意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想一定要让学生经历了自主体验和反思顿悟的过程。本节课高老师打破常规,让学生大胆猜测:如果有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么办法?(把数据变小些,并举例研究。)激起学生优化需求,学生也从中认识到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。
4、准:找准盲区巧点拨---形成优化策略
学生挑战在100个中找次品时,高老师及时点拨引导---------当遇到一个问题时,我们迈出第一步至关重要。结合课前游戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的计划。当出现分2份和3份的对比分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。
探索实践后的启示与思考
启示一:发展才是硬道理。在备这课时,高老师也考虑到用天平来操作演示,但由于现场条件的限制----没有准备现成的天平;同时又考虑到学生用天平来称在操作上也会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天平带进课堂,而是让学生用自己的肢体演示代替天平操作。只要能让学生得到发展,删繁就简是很划算的。
启示二:万丈高楼平地起。解决再难的问题,丰实基础是至关重要的。为了让学生的思维顺利由方法的多样性转向最优化,高老师在教材例1之前增设在3个中找次品的环节,目的有二:
1、走实第一步。在这一环节中让学生重温天平的结构和用法,收集平衡与不平衡所反映的信息,为后续研究储备能量。
2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从模仿开始的习惯。要想学生的思维提升的更高,必须把思维的基础打得最牢。
思考一:经历了本堂课的预设与生成后,对于本课这样有一定难度的教学内容,教到怎样一个度是最合适的?
思考二:这节课中,对于最佳策略的成因还有没有更好的、更有说服力的解释方法呢?
古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高老师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。
《找次品》教学反思2《找次品》是属于一节思维训练课,以“找次品”这一操作活动为载体,让学生通过观条、试验明白解决问题的多样性,体会运用优化方法解决问题的有效性,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。本节课先分析从3瓶钙片中找一个次品的方法和次数,初步认识找次品的基本方法,然后再来分析在9个零件中找一个次品的方法和次数,进行优化,并且延伸到10、11虫个零件怎么分。教材虽然给我们提供了一个基本教学思路,但是教学过程如何展开,优化在什么时候妥当还需要教师充分地备好课。
充分的动手操作和课件直观演示是学生分析找次品次数的基础。本节课是属于思维训练课,所以难度较大,比较抽象,学生学起来会有困难,特别是对学习能力中下的学生。这节课我给每个学生提供了学具,让学生借学具模拟称一称,并小组交流方法,同学间相互帮助,让学生都能理解找次品的基本方法和基本原理,为接下来符号化分析称的过程打下了基础。课堂上还有一部分同学一直很“安静”,那就是他们的思维根本就没有调动起来。本节课中教师力图渗透一些基本的学习方法,如观察、比较、分析、猜测等方法始终 ……此处隐藏9644个字……次品》教学反思13
想快捷准确解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养,学生少了发现后的欣喜与快乐,缺乏比较、综合等思维能力的锻炼。为此,我今天给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现了结论。这样的教学显然费时较多,练习二十六第4、6、7题都没能在单元时间内完成,必须再增加一个课时练习课,但学生们学得开心,思维十分活跃。
在教学例2时,学生们发现9个物品不可能按教材所说分成4份(2,2,2,3)放在天平上称。因为将其中两个2放在天平上称过以后,剩下的2与3是不同能可时放在天平两边的,所以这种分法应该改为分成5份,即(2,2,2,2,1)。而这种方法实质与9分成4,4,1是一致的。因此,学生认为教材这种分法不合理。不知大家怎么认为?
因为9不能平均分成两份,因此学生们普遍选择了分3份。个性化解法丰富多彩,除了教材中提到的4,4,1;3,3,3外,还有2,2,5和1,1,7两种不同分法。这些分法中除平均分成3份以外的分法外,其它都至少需要称3次才能保证找出次品,所以通过观察比较,学生自己发现了解决问题的策略。一是把待分的物品分成3 份;二是要分得尽量平均,能够平均分的平均分成3 份,不能平均分的,也应使多的与少的一份只差1 。
最后总结规律: “只要记住物品总数在2——3之间,需要称1次就能保证找出次品;在4——9之间,需要称2次;在10——27之间,需要称3次……。”我引导学生独立阅读137页的“你知道吗”。大家普遍认为这种方法好,如果是填空题可以根据表格快速填写,节省时间;如果是解决问题,可以根据表格核对自己的结果。但记不住数据怎么办?“从上表你能发现什么规律吗?”一石激起千层浪,对照数据寻记忆窍门。果然,不一会儿功夫,刘思源同学就发现了隐藏的规律。“要辨别的物品数目2——3;4——9;10——27;28——81……”,这里的后一个数3,9,27,81都是不断乘3得来的。因此,只需记住第一组数据,然后将3依次乘3,即可得到每组数据的第二个数,第一个数则是前一组数据中第二个数+1得到的。
《找次品》教学反思14“找次品”是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课。
接到期末考试的时间,确实有点紧,在请教有经验的老师怎样讲的前提下,直接让学生讨论找次品的最优方法。学生说:“分组法最省时间。”我直接说:“好!下面讨论怎样分组最优方案。”
“我总结出来了,分成三份。”
“当待测物品的数量是3的倍数时,把待测物品平均分成三份,能保证用最少的次数找出次品。要平均分成三份哦!”
“说的很到位,谁还有补充。”
“当待测物品的数量不是3的倍数时,也把待测物品分成3份,每份个数尽可能接近,使多的一份与少的1份只相差1。”
“补充的很全面,把樊静祎与刘懿贤的加起来就是找次品的规律。”
“好,下面咱们来实战一下!”
让学生把小状元拿出来,开始做!由于刚才讲的快,所以让学生说答案的时候必须说思路。
没有想到,孩子们掌握的这么好!心里窃喜。
《找次品》教学反思15《找次品》是人教版小学数学五年级下册第七单元《数学广角》的教学内容,这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。上这样一课,是对自己的一次挑战。备课初衷我认为这一课,是在学习新课标后:从“双基”到“四基”,从“两能”到“四能”,我的新理念能得到充分的应用的一课。对基本思想的认识,这里的思想方法,不是前几年的教学实验“数学思想方法”这里指的是支撑数学科学发展的思想,核心在于数学推理、数学建模。如何让学生获得数学思想,关键要让学生经历概念的抽象过程。而《找次品》一课恰恰能把这一理念应用得淋漓尽致。
一、猜想验证是一种重要的数学思想方法
正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直觉思维做出各种猜想,然后加以证实。”因此,小学数学教学中我们要重视猜想、验证思想方法的渗透,以增强学生主动探索,获取数学知识的能力,促进学生创新能力的发展。本节课我就让学生经历了“探究—猜想—验证—推理—归纳”的过程。从3瓶探究中建立找次品的基本模型,然后通过自主探究获得8、9瓶称的次数最少的方案,进而猜测最简方法,为了验证这一猜想,就必须再用一个例子去试验,然后归纳得出结论。学生通过经历知识的形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索、获取知识的能力,增强了学好数学的信心。
二、推理能力的培养
新课标指出:推理能力的发展应贯穿于整个数学学习过程中。推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理包括合情推理和演绎推理在本节课教学中两者都有具体体现。在学生独立探究、观察后发现,在找次品次数最少的这些方案中都把待测物品分成3份,于是得出结论,要使找次品次数最少,就要将待测物品分成3份。这一过程属于合情推理。而在对总结的结论用8瓶和9瓶进行小组验证这一环节中,又恰恰运用了演绎推理。两种推理功能不同,却相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。学生在尝试总结运用找次品最优策略的过程中发展了推理能力。
三、基本活动经验的认识
对学生而言,所谓数学的基本活动经验是指:围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。基本活动经验是学生的亲身经历。让学生获得基本活动经验,本质上让学生经历数学活动直观,但必须建立在学生亲身经历和感知的基础之上。本节课中我首先让学生独立动手实践、集体探究等。但由于时间关系,学生活动及讨论的时间偏少,但我和学生的心情一样愉快,因为学生有了探索的欲望和一定的解决问题的能力,这也是我最大的收获。
四、存在的不足
这节课也存在不足,由于是40分钟课,组织学生动手操作与合作交流不够充分:如果是60分钟课,在独立探究和小组验证活动中我会增加2—3分钟以便学生充分感知寻找最优策略的必要性;并且在独立研究后我会用4—6分钟,让学生逐一说明10个小球、11个小球找到次品的方法,这样以学带教,从而实现“教师为了不教”的教学境界,达到促进学生自主学习的根本目标。
总之,这次活动给我了一次很好的锻炼、成长的机会,使我找到了自身努力地方向!我深信,只要我们摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长铺垫出一条坚实之路!