《运算定律》教学反思
身为一名到岗不久的人民教师,我们要有一流的课堂教学能力,写教学反思可以很好的把我们的教学记录下来,教学反思要怎么写呢?下面是小编为大家整理的《运算定律》教学反思,仅供参考,大家一起来看看吧。
《运算定律》教学反思1《数学课程标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”教学中我们应充分引导我学生去发现问题、解决问题,才能很好地应用数学知识。
我在教学乘法的运算定律这部分知识时,作了以下一些调整:
1、按照教参中的教学进程安排,乘法交换律和结合律需要分两课时完成。我认为将两课时可以合并为一课时。首先,加法的交换律和结合律与乘法的交换律和结合律比较相似,由两条加法定律猜想到两条乘法定律,难度不大,十分自然。其次,两条乘法定律一起学,一方面有利于比较区分;另一方面,更利于实际应用,事实上在计算应用中,这两条定律通常是结合在一起应用的。但是教学后发现,学生在应用时情况较好,但对两条定律的区分不够明确。于是,在接下来的运用运算定律进行简算运算教学时,我出示了大量的习题,分组冲关夺红旗比赛,让学生通过计算从中去发现问题,并从数学角度去探讨问题,然后再通过举例验证,让学生直观感知乘法中的一些变化规律——任意交换因数的位置,积不变;因数位置不变,改变计算顺序,积也不变。这样,学生参与非常积极,在验证的过程中学生把乘法中的这种变化规律,心领神会。由此,学生在进行简算过程中,得心应手,不但学得愉快,而且用得灵活,效果较好。
2、乘法分配律的教学则是引导学生自己探索、发现。利用学生已经掌握的知识进行迁移,从学生比较熟悉的生活实际问题引入,学生较易接受与理解。在我的提示指导下,渐渐发现了几组算式之间存在着的联系,找到规律,再通过举例,验证自己所找到的规律,并且再启发他们说出了乘法分配律的字母表达式。这样既让学生有独立观察、思考、练习的机会,又安排了小组讨论,让每个同学都有发言的机会,使全体学生的学习愿望都能得到满足。因此,这堂课学生参与的积极性相当高,课堂气氛比较活跃,回答问题的面也比较广,从学生的练习反馈情况来看,对这个内容还是掌握较好。
从实际教学的情况来看,这样的调整教学效果还不错,我自己认为已基本达到了我课前所设定的目标。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透“从特殊到一般,再由一般到特殊”的认识事物的方法,提高数学的应用意识。但由于学生人数太多,我在面向全体方面做的还不够,使得个别不爱发言的同学,很少有表现自己的机会,这也是我在以后的教学当中值得注意,应该改进的地方。
《运算定律》教学反思2本单元运算定律是运算的基本性质,被誉为数学大厦的基石,学生在学习的过程会比较抽象化,概括化,在学习的过程中,帮助学生去理解每一个定律的内涵及运算意义。我在教学过程中,重视符合学生已有的认知特点和横向知识结构,以研究思想,发展学生的数学模型思想,培养学生合理选择算法的能力,发展思维的灵活性。
对于本单元的复习课,我首先充分了解学生的掌握情况,进行学情分析,帮助学生建立知识体系,形成逻辑思维能力,有条理清晰的掌握运算定律及每个定律的用法。如何选择合适的方法,在课堂上,我们师生共同归纳总结回忆,梳理知识点。对重难点,我重点强调,查漏补缺,接着让孩子们画思维导图,培养他们建立知识体系,用自己的方式来总结知识点。学习真正学会了什么,其实是形成自己的知识体系,学会方法和思想。
思考:这一单元的学习我不断思考,运算定律对于孩子来说比较抽象,为了寻找答案,孩子们为自己设计了一条丰富生动的探索之路。课上,我们师生成为学习伙伴,在探究的过程中相互扶持,相互促进,不仅寻找问题的答案,更重要的是摸索出的一条研究的路径。其实,我们常常在教学中很有很多担心,担心学生找不到学习的方向,于是我们在教学中不停的敲黑板:看这是重点,快快看过来;担心学生够不到目标,所以我们在学习过程中设一个又一个问题,铺成一级又一级的台阶,扶着他们前行。担心学生走弯路,我们为他设计了一条康庄大道,连路上的小石子也要细细的扫开。而把握好课堂生成的资源,碰撞出思维的火花,促进新的教学内容生成,实现教学动态灵活发展并没有达到。这是我需要不断反思以及努力改进的方向。
《运算定律》教学反思3运算定律与简便计算,共包括了五个定律和两个性质:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c
连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)
大多数学生对于加法运算定律和乘法的交换律掌握的比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:
1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)
34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)
2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。
3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学
4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4
5.针对逆向运用,有以下规律
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
……此处隐藏6290个字……理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600×25×49600÷25÷49600÷25×4
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
四、加强应用训练,促进有效教学
例1、求下列图形“L型”菜地的面积;
9厘米21厘米9厘米
例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?
例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。
1、学校一共买了多少个羽毛?
25×12
=25×4×3
2、买羽毛球一共花了多少元?
32×25
=8×4×25
3、每枝羽毛球拍多少元?
330÷5÷2
五、加强错例分析,促进有效教学
例1:25×32×125例2:32×125
=25×4+8×125=4×(8×125)
=4×8×4×125
例3:463-82+18例4:9600÷25×4例5:25×(400+4)
=463-(82+18)=9600÷(25×4)=25×400+4
《运算定律》教学反思13《运算定律和简便运算的复习》教学反思经过思考的课堂,老师游刃有余,学生思维得到拓展。不同的学生都有所进步。
1、本节课我本着学生为主体,教师为主导。而且本身就是一节复习课。所以凡是学生能说清的,我绝不添言;学生说不清的,练着说;还说不明白,优秀学生引领。
2、把教学目的给孩子,把学习方案给孩子。放手让学生自主复习运算定律,并小组同学互说定义和字母表达式,并思考如何把定律和性质进行分类合理。学生的表现让我惊异。两种分类方法说的头头是道。思路清晰:可以根据四则混合运算,进行分类:加法有加法交换律,加法结合律;减法的运算性质;乘法有乘法交换律、乘法结合律、乘法分配律;除法有除法的运算性质。
还可以根据运算符号变换分类:加法交换律、乘法交换律;加法结合律、乘法结合律;减法的运算性质、除法的运算性质;乘法分配律。给学生机会,他会还你一个奇迹!
3、在乘法分配律的汇报过程中,学生的理解表达能力受阻,一方面原因是小组讨论学习的过程中,实效性还有所欠缺,只挑选容易的定律进行交流,自主复习内容不够全面。另一方面此部分内容有一定难度,也是本节课复习的重难点所在,后面习题针对此项进行了重点复习,进行了补充。
4、我认为本节课,基础练习题目全面,有口答,有分析判断,有应用题目动笔,拓展训练能够从出题者的思维角度自主发散思维,总结简便运算的规律。使简便运算更加活学活用。
《运算定律》教学反思14对于小学生来说,计算教学是数学教学的基础,是教学中的一个重点问题,也是一个难点。在计算教学中,不仅要使学生能正确合理的计算,还要掌握灵活的计算方法,何老师这节课正是在学生掌握了运算定律的基础上,要求学生灵活运用这些定律使计算简便。我觉得这节课有一大特点:就是实。
“实”体现在:
1、课前复习扎实有效。因为数学课的课前复习很重要,它可以为新课做充分的铺垫与衔接,把前面零散的认知集中一点,便于学生在新课中类比活应用。
2、课中首先将所有运算法则一一复习,再在复习过后通过练习巩固,加深印象。
3、课堂中的学生自主学习具有时效性,让学生在独立完成作业后进行汇报,通过自己与别人的进行对比,达到互相补足,达到了人人参与的目的。
不足之处在于:
1、教师对于“班班通”的运用不是很熟悉;
2、我感觉教师出示的计算题的计算量相对有点大;
3、教师对于后面习题的讲解不够细致。
改进建议:
在此,我提出一些自己不成熟的建议:
1、我觉得教师在计算题讲解过程中,可以出示计算过程;
2、可以适当的减少计算题的题目,让所有学生能完成练习。
《运算定律》教学反思15加法运算定律和乘法运算定律。加法运算定律包括加法交换律和加法结合律;乘法运算定律包括乘法交换律、乘法结合律和乘法分配律。
学生对于加法运算定律和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于乘法结合律则运用不是很好,乘法分配律则更为糟糕。
细想有以下几个原因:
第一,学生现在只是能够初步认识,弄明白这三个乘法运算定律,还不明白这几个运算定律的作用和意义。
第二,学生不能正确的分析算式并正确的运用运算定律,尤其是乘法分配律,它是乘法和加法的运算定律,学生忽视运算符号,极易把乘法分配律和乘法结合律混淆。
第三,对于乘法分配律,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。
总之,学生并没有深刻体会到运算定律带来的方便,解决办法只能是多讲多练,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,也就是如何做题。等待讲解了下节内容简便运算之后,我想学生会得到一个明确地感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣。